Mean curvature flow of graphs in warped products

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean curvature flow of spacelike graphs

We prove the mean curvature flow of a spacelike graph in (Σ1 ×Σ2,g1 −g2) of a map f : Σ1 → Σ2 from a closed Riemannian manifold (Σ1,g1) with Ricci1 > 0 to a complete Riemannian manifold (Σ2,g2) with bounded curvature tensor and derivatives, and with K2 ≤ K1, remains a spacelike graph, exists for all time, and converges to a slice at infinity. We also show, with no need of the assumption K2 ≤ K1...

متن کامل

Mean Curvature Blowup in Mean Curvature Flow

In this note we establish that finite-time singularities of the mean curvature flow of compact Riemannian submanifolds M t →֒ (N, h) are characterised by the blow up of the mean curvature.

متن کامل

Warped Products Admitting a Curvature Bound

Warped products provide perhaps the major source of examples and counterexamples in metric and Riemannian geometry. Sufficient conditions for a warped product B×f F to have a curvature bound in the sense of Alexandrov, either above or below, are found in [AB 04]. Given the importance of warped products, we want to know if all the known sufficient conditions are needed. Here we prove their neces...

متن کامل

Long time behavior of Riemannian mean curvature flow of graphs

In this paper we consider long time behavior of a mean curvature flow of nonparametric surface in Rn, with respect to a conformal Riemannian metric. We impose zero boundary value, and we prove that the solution tends to 0 exponentially fast as t → ∞. Its normalization u/supu tends to the first eigenfunction of the associated linearized problem.  2002 Elsevier Science (USA). All rights reserved.

متن کامل

Sharp Estimates for Mean Curvature Flow of Graphs

A one-parameter family of smooth hypersurfaces {Mt} ⊂ R flows by mean curvature if zt = H(z) = ∆Mtz , (0.1) where z are coordinates on R and H = −Hn is the mean curvature vector. In this note, we prove sharp gradient and area estimates for graphs flowing by mean curvature. Thus, each Mt is assumed to be the graph of a function u(·, t). So, if z = (x, y) with x ∈ R, then Mt is given by y = u(x, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2012

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-2012-05425-0